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We consider the folding of a self-avoiding homopolymer on a lattice, with saturating hydrogen bond inter-
actions. Our goal is to numerically evaluate the statistical distribution of the topological genus of pseudoknot-
ted configurations. The genus has been recently proposed for classifying pseudoknots �and their topological
complexity� in the context of RNA folding. We compare our results on the distribution of the genus of
pseudoknots, with the theoretical predictions of an existing combinatorial model for an infinitely flexible and
stretchable homopolymer. We thus obtain that steric and geometric constraints considerably limit the topologi-
cal complexity of pseudoknotted configurations, as it occurs for instance in real RNA molecules. We also
analyze the scaling properties at large homopolymer length, and the genus distributions above and below the
critical temperature between the swollen phase and the compact-globule phase, both in two and three
dimensions.
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I. INTRODUCTION

One of the most exciting fields in modern computational
molecular biology is the search for tools predicting the com-
plex foldings of biopolymers such as RNA �1–3�, when ho-
mologous sequences are not available. The prediction of the
full tertiary structure of a RNA molecule is still an open issue
�4�, mainly because of its intrinsic high computational com-
plexity �5�. It is known that the tertiary structure involves an
important set of structural motifs, the so-called pseudoknots
�6�. These are conformations such that the associated disk
diagram �which represents all nucleotides along the RNA
backbone as points on an oriented circle from the 5� end to
the 3� end, and where each base-pair is represented by an arc
joining the two interacting nucleotides, inside the circle; see
Fig. 1� is not planar, i.e., it contains intersecting arcs. RNA
pseudoknots have been identified in nearly every organism,
and they proved to play important regulatory and functional
roles �7,8�. Their ubiquity manifests in a large variety of
possible shapes and structures �9�, and their existence should
not be neglected in structure prediction algorithms, as they
account for 10%–30% on average of the total number of base
pairs. Actually, several computer programs have been pro-
posed for predicting RNA secondary structures including
pseudoknots �10–16� �the list is not exhaustive�, but the com-
plexity of the problem and the approximations involved are
usually such that the issue is far from being solved �17�.

An analytical mathematical tool which can fully describe
any RNA contact structure including all possible
pseudoknots, appeared first in �18�. There, all RNA disk dia-
grams are considered as Feynman diagrams of a suitable
field theory of N�N Hermitian matrices �a combinatorial
tool borrowed from quantum field theory�. The latter is
known to organize all the diagrams according to an
asymptotic 1 /N2 topological expansion at large-N �19�. This
provides in fact a rigorous way to classify nonplanar dia-
grams, and therefore it induces a natural topological classi-

fication of pseudoknots �12�. Namely, to any given
pseudoknotted configuration �and more generally, to any
contact structure of an heteropolymer with binary saturating
interactions�, one can associate an integer number g, the ge-
nus. It is defined as the topological genus of the associated
disk diagram, i.e., by �=1−2g, where � is the Euler charac-
teristic number of the diagram. As reviewed in �20�, the ge-
nus is the minimum number of handles the disk should have
in order that all the cords are not intersecting �see Fig. 1�.
Other characterizations of pseudoknots have been proposed
�e.g. �21–23��. The classification �18� is truly topological,
meaning that it is independent from the way the diagram is
drawn, and dependent only on the intrinsic complexity of the
contact structure.

The large-N asymptotics of the analytical model in �18� is
hard to obtain exactly. However, in �24� a special case of the
general model �18� has been considered and solved. It was
the simple case of an infinitely flexible and stretchable ho-
mopolymer, where there is no dependence on the primary
sequence, and any saturating base pair between all the
“nucleotides” is allowed. An analytical asymptotic expansion
was evaluated and the distribution of the genus of
pseudoknotted contact structures was obtained. One of the
results is that an homopolymer with L nucleotides has an
average genus close to the maximal one, that is L /4. Of
course, real RNA molecules are not infinitely flexible and
stretchable homopolymers. It is customary to assume that the
bases i and j can interact only if they are sufficiently far apart
along the chain �e.g., �i− j��4, �4�� because of bending ri-
gidity. Moreover helices have a long persistence length
��200 base pairs� and this necessarily constrains the allowed
pairings even more. We expect that including all steric and
geometrical constraints should considerably decrease the ge-
nus of allowed pseudoknots, compared to the purely combi-
natorial case �24� where the actual three-dimensional confor-
mation was neglected. The purpose of this work is to
numerically analyze the effects of steric and geometric con-
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straints on the genus distribution of pseudoknots topologies
in homopolymers, in the same spirit of �24�.

II. THE MODEL

We model the system by considering a polymer on a cubic
lattice, i.e., a self-avoiding random walk with short-range
attractive interaction �25�. A self-avoiding walk �SAW� is a
sequence of neighboring lattice sites i=0,1 , . . . ,n with coor-
dinates �ri�, such that the same lattice-site cannot be visited
more than once. This is a standard approach in polymer
physics �and RNA; see e.g. �21,23��. The attractive interac-
tion is usually used to describe bad solvent quality, but in our
case we insist more on the saturating nature of the hydrogen
bond interactions. Such a requirement is crucial here, since
the concept of the topological genus for a contact structure
can be defined unambiguously only when the interactions are
saturating. One of the most natural ways to model the inter-
action is by considering a “spin” model �see e.g. �26–28��.
Strictly speaking, our model is a variation of the standard
�-polymer model, and similar interaction models for RNA on
the lattice have been already proposed �e.g., �29��. To each
vertex i we associate a unit spin si which represents the
nucleotide direction with respect to the backbone. The only
allowed directions for si are the lattice ones. Moreover, the
spins cannot overlap with the backbone because of the ex-
cluded volume between the nucleotides and the backbone.
The saturating nucleotide-nucleotide interaction occurs when
two spins si ,s j on neighboring sites, �ri−r j�=1, are pointing
to each other. The energy of a configuration �ri ,si� is thus
defined by the Hamiltonian

H = − �	
i�j

��ri + si − r j���si + s j����ri − r j� − 1� , �1�

where ��0 is an effective hydrogen-binding energy, the
same for all monomers of the chain. Let us note that since we
are not aiming to set up a realistic lattice model for RNA-
folding, but rather to understand steric effects on the genus
distributions of a homopolymer, we do not take into account
stacking energies.

The basic features of our model are clear: At high tem-
peratures, we expect the system to be in a swollen SAW state

�entropy dominated coil state�, whereas at lower tempera-
tures we expect a kind of “compact globule”-like phase �25�.
The transition temperature T� defines the so-called �-point.
However, details on the thermodynamics, kinetics, phase dia-
gram, etc. can be rather complex �23,29�. We limit ourselves
here only to the analysis of the genus distribution of
pseudoknotted structures for comparing the effects of steric-
ity constraints versus the purely combinatorial model of �24�.
All other considerations are postponed elsewhere.

III. THE METHOD

The numerical sampling of the statistical distribution Z
=	SAW,�si�

exp�−H /kBT�, where kB is Boltzmann’s constant,
T is the absolute temperature, and the sum is restricted to
SAWs and configurations of spins �si� satisfying the afore-
mentioned constraints, is implemented by using the Monte
Carlo Growth Method. It was originally proposed by Garel
and Orland in �30� and has been applied to several statistical
systems since then �see references in �31��. It consists in
starting with an ensemble of chains at equilibrium and then
growing each chain by adding one monomer at a time with a
probability proportional to the Boltzmann factor for the en-
ergy of the chain. At each step the ensemble remains at equi-
librium �a detailed description of the algorithm with applica-
tions can be found in �31��. It belongs to the family of so-
called “population Monte Carlo algorithms” �32�, where,
contrary to the “dynamical” Markov Chain Monte Carlo
methods, the population is fully grown and evolved, nondy-
namically. At high temperatures we considered populations
with a variable number of chains in the range 10 000–
40 000, and with a typical length of L=500 monomers �up to
L=1200 in some cases�. Accuracy and statistical averages
were computed by taking several independent populations
�of the order of 40�. At low temperatures we considered
populations of up to 100 000 chains. That is so because at
low temperatures the chains are unavoidably trapped into
local minima. This problem can be partly controlled and
monitored by considering more populations of a larger size,
and by analyzing the population-population correlations for
all observables we estimate. That is also the reason why we
do not explore the region very much below the critical tem-
perature, i.e., at very low temperatures. In this work, we limit
our analysis only in the region of temperatures where all our
tests are statistically reliable and not biased by local minima
trapping. Finally, all the simulations in three dimensions
have also been performed on a square lattice in two dimen-
sions.

IV. RESULTS AND DISCUSSION

We expect different genus distributions above and below
T�. We therefore first determine T�, which can be done effi-
ciently by computing the end-to-end distance Re

2= �rL−r0�2,
and the radius of gyration Rg

2=	i�j�ri−r j�2 /L2. It is known
that the ratio �2= 
Re

2� / 
Rg
2� is universal in the limit L→	

and converges to a step function as a function of T, with a
universal critical value at T� �25,33,34�. In Fig. 2 we plot
� which shows a transition temperature T�=0.39±0.01

FIG. 1. �Color online� Top, from left to right: a hairpin loop
�PDB number 1NA2�, its squiggle-plot, and disk diagram represen-
tation which is of genus zero since it is planar. Bottom: H-type
pseudoknot �PDB number 1RNK�. In this case the disk diagram is
not planar and has genus one.
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�T�
2D=0.48±0.02 in two dimensions�, in units where kB=1

and �=1. We also verified that �	=2.5±0.05 for T
T� as-
ymptotically, and we find an intermediate value ��

=2.35±0.05 at T� �and �	=2.67±0.01 and ��=2.39±0.01 in
2D, respectively�. At large-L we find the following scalings:
for T�T�, 
Rg��L� with �=0.59±0.01 ��=0.75±0.02 in
two dimensions�, which is consistent with the critical expo-
nent of a swollen SAW; for T�T�, �=0.32±0.02 ��

=0.50±0.01 in two dimensions� which is consistent with a
compact phase. All these results are in agreement with high-
accuracy simulations of similar models �35,36�. We then pro-
ceed with extracting the genus distributions in the two
phases. The results are in Figs. 3 and 4. When comparing
them with the combinatorial results of �24�, we see that the
genus at a fixed L is on the average much smaller. More
precisely, below the �-point the average genus scales like by

g /L��0.141±0.003 and 
g /L��0.1318±0.0025, in 3D �at
T=0.2� and 2D �at T=0.225�, respectively. In both cases the
scaling is at a lower rate �about 50% less� than the value L /4
computed in �24�. In the swollen-phase �e.g., T=10�T��, the
average genus is given by 
g /L���585±8�10−6 in 3D, and

g /L���410±1�10−5 in 2D. Such a low rate comes from the
tendency of a homopolymer to develop long rectilinear sub-
chains in the swollen phase. In two dimensions the entropic
factor is smaller than in three dimensions and the genus
growth rate is therefore larger �see Fig. 4�. Moreover, the
genus distributions for T�T� are numerically consistent with
Poissonian distributions �see Fig. 4�, whereas at smaller tem-
peratures they are closer to Gaussian ones.

It turns out that the average genus of homopolymers de-
scribed by the Hamiltonian Eq. �1� is an extensive quantity,
like the energy, and their ratio is shown in Fig. 5. All these
results confirm that the genus distribution behaves differently
in the two phases, as expected. They also quantify how much
the restrictions induced by the actual three-dimensional ar-
rangement of the chain can limit the number and complexity
of pseudoknots �compared to �24��. We find values closer to

FIG. 3. The genus distributions of pseudoknots at fixed L, in 2D
�top� and 3D �bottom�, in the compact phase at T=0.225 and T
=0.2, respectively. The insets represent the behavior of 
g� at large
L.

FIG. 4. The genus distribution of a two-dimensional homopoly-
mer, in the swollen phase T=10�T�

2D, at various values of L.

FIG. 5. The ratio �genus�/�energy� of an homopolymer on a
cubic lattice, as a function of T, at different values of L.

FIG. 2. The ratio � in 3D as a function of the temperature T, for
several values of L �with error bars plotted only for L=60�. At low
temperatures the error bars are larger than the variations of the
curves. The inset shows that as L increases, the curves approach a
universal step function about T��0.39±0.01.
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what seems to happen in pseudoknots of real RNA mol-
ecules. In fact, real RNA molecules typically have small ge-
nus. For instance, a simple H-type pseudoknot ��20 bases or
more� or the classical kissing-hairpins pseudoknot ��30
bases or more� both have genus 1, much less than the toy-
model prediction in �24�. Even tRNAs ��80 bases� mostly
contain 4 helices, two of them linked together by a kissing-
hairpin pseudoknot, has still genus 1. Typical tmRNAs
��350 bases long� contain four H-type pseudoknots, and its
total genus is 4, far below the theoretical upper bound L /4.
Our numerical results would instead indicate, for instance for
a 80 bases long homopolymer, a genus of about 11.2 in three
dimensions ��10.5 in two dimensions�. Even if it is smaller
than the value suggested in �24� �because of the steric con-
straints�, it is still too high when compared to real RNA

molecules. The obvious reasons are that we neither included
the primary sequence nor realistic stacking energies. We
have nevertheless been able to quantify the general effect of
steric constraints on the genus distribution of a pseudoknot-
ted homopolymer on a lattice, as a first step towards a model
which includes a more realistic energy function.
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